Realization of the Einstein-Podolsky-Rosen paradox for continuous variables.
نویسندگان
چکیده
The Einstein-Podolsky-Rosen (EPR) paradox is demonstrated experimentally for continuous variables by employing a nondegenerate optical parametric amplifier (NOPA). Such a system is analogous to and under some ideal conditions is in one-to-one correspondence with the original system discussed by EPR. In particular, the quadrature-phase amplitudes for a signal beam are inferred in turn from those of a spatially separated but strongly correlated idler beam, where these optical amplitudes are analogous to canonical position and momentum variables. The variances for the two inferences are measured and their product is observed to be below the limit of unity associated with the Heisenberg uncertainty relation, in apparent contradiction with quantum mechanics according to the argument of EPR. The smallest product of inference variances achieved in the experiment is (0.70 40.01). Various other types of quantum noise for this system are also investigated, and a theory of a narrowband NOPA is presented with losses included. A comparison between experiment and this theory shows relatively good agreement. The question of a local hidden-variables description of the system is discussed.
منابع مشابه
Continuous variable tripartite entanglement and Einstein-Podolsky-Rosen correlations from triple nonlinearities
We compare theoretically the tripartite entanglement available from the use of three concurrent χ(2) nonlinearities and three independent squeezed states mixed on beamsplitters, using an appropriate version of the van Loock– Furusawa inequalities. We also define three-mode generalizations of the Einstein–Podolsky–Rosen paradox which are an alternative for demonstrating the inseparability of the...
متن کاملRealization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion.
We report on a momentum-position realization of the EPR paradox using direct detection in the near and far fields of the photons emitted by collinear type-II phase-matched parametric down conversion. Using this approach we achieved a measured two-photon momentum-position variance product of 0.01 variant Planck's over 2pi (2), which dramatically violates the bounds for the EPR and separability c...
متن کاملSteering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox.
The concept of steering was introduced by Schrödinger in 1935 as a generalization of the Einstein-Podolsky-Rosen paradox for arbitrary pure bipartite entangled states and arbitrary measurements by one party. Until now, it has never been rigorously defined, so it has not been known (for example) what mixed states are steerable (that is, can be used to exhibit steering). We provide an operational...
متن کاملTowards an Einstein–Podolsky–Rosen paradox between two macroscopic atomic ensembles at room temperature
Experiments have reported the entanglement of two spatially separated macroscopic atomic ensembles at room temperature (Krauter et al 2011 Phys. Rev. Lett. 107 080503; Julsgaard et al 2001 Nature 413 400). We show how an Einstein–Podolsky–Rosen (EPR) paradox is realizable with this experiment. Our proposed test involves violation of an inferred Heisenberg uncertainty principle, which is a suffi...
متن کاملViolation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements.
In this Letter, we derive an entropic Einstein-Podolsky-Rosen (EPR) steering inequality for continuous-variable systems using only experimentally measured discrete probability distributions and details of the measurement apparatus. We use this inequality to witness EPR steering between the positions and momenta of photon pairs generated in spontaneous parametric down-conversion. We examine the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 68 25 شماره
صفحات -
تاریخ انتشار 1992